Journal of Mid-life Health Journal of Mid-life Health
Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission | Subscribe | Advertise Users Online: 207  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 


ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 1  |  Page : 11-16

Hormone replacement therapy reduces lipid oxidation directly at the arterial wall: A possible link to estrogens' cardioprotective effect through atherosclerosis prevention


1 Department of Gynecology, San Juan de Dios Hospital, Costa Rica; Department of Biochemistry, Faculty of Medicine, School of Biochemistry, University of Costa Rica, Washington, USA
2 Department of Biochemistry, Faculty of Medicine, School of Biochemistry, University of Costa Rica, Washington, USA

Correspondence Address:
Carlos Gómez Escalante
Oficina #314, Distrito Cuatro, Guachipelin de Escazu, San Jose

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0976-7800.201967

Rights and Permissions

Background: The first step in atherosclerosis formation is the ingurgitation of an oxidized low-density lipid (LDL) molecule by a macrophage which then turns into a foam cell within the vascular wall and initiates a cascade of inflammatory responses. Could it be that the potential cardioprotective effect observed in women receiving hormone replacement therapy (HRT) is modulated by estrogen's capacity to decrease LDL oxidation in the vascular wall and thus decrease atherosclerotic foam cells? Materials and Methods: Thirty-four adult female Wistar rats were divided into three groups. All were double oophorectomized. After recovery, Group 1 received Estradiol Valerate subcutaneous (SC) (2.5 mg/kg/week), Group 2 Estradiol Valerate SC (2.5 mg/kg/week) + Progesterone SC (10 mg/kg/48 h), and Group 3 Placebo SC. After 10 weeks, all rats were sacrificed and a vascular dissection performed. Malondialdehyde (MDA) was measured directly on the vascular extract to determine lipid oxidative levels and HRTs' effect. Renal and hepatic tissue was also studied. Total antioxidant status (TAS) was measured to determine overall oxidative behavior. Results: Vascular MDA levels for Group 1 = 80.80 (±16.8) μmol/ml/g, Group 2 = 107.69 (±24.9) μmol/ml/g, and Group 3 = 140.96 (±32.4) μmol/ml/g. ANOVA (P < 0.05), with a post hoc Bonferroni corrective t-test, showed that both Group 1 and 2 have statistically significant lower levels of MDA than Group 3. Renal tissue showed less oxidative damage in the HRT groups, while hepatic tissue showed an inverse behavior with less lipid oxidation in the placebo group. TAS decreased with oophorectomy in all groups but decreased less in both groups that received HRT compared to placebo (P < 0.05). Conclusion: HRT significantly reduces lipid oxidation directly in the arterial wall.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed662    
    Printed18    
    Emailed0    
    PDF Downloaded89    
    Comments [Add]    

Recommend this journal