Journal of Mid-life Health Journal of Mid-life Health
Home | About us | Editorial board | Search | Ahead of print | Current Issue | Past Issues | Instructions | Online submission | Subscribe | Advertise Users Online: 1429  Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size 

 Table of Contents 
Year : 2019  |  Volume : 10  |  Issue : 4  |  Page : 179-183  

A clinicopathological evaluation of postmenopausal bleeding and its correlation with risk factors for developing endometrial hyperplasia and cancer: A hospital-based prospective study

1 Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
2 Department of Obstetrics and Gynaecology, Mahatma Gandhi Medical College and Research Institute, Puducherry, India

Date of Web Publication26-Dec-2019

Correspondence Address:
Jasmina Begum
Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Bhubaneswar - 751 019, Odisha
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmh.JMH_136_18

Rights and Permissions

Objective: The aim of this study is to investigate the clinical data from history and endometrial pathology by endometrial sampling in patients with postmenopausal bleeding and to identify risk factors associated with future development of endometrial cancer (EC). Methods: We prospectively studied 76 postmenopausal women with vaginal bleeding and endometrial thickness (ET) >5 mm undergoing endometrial biopsy or dilatation and curettage. Patient characteristics and endometrial assessment of women with or without EC and hyperplasia were compared. Univariate and multivariate logistic regression identified factors associated with risks of endometrial neoplasia. Results: In this study, the mean age at the time of presentation was 57.17 ± 7.11 years, mean menopausal age was 49.18 ± 3.69 years, and mean thickness of endometrial was 11.13 ± 6.37 mm. The histopathological analysis showed atrophic endometrium (30.3%), proliferative endometrium (27.6%), EC (15.8%), endometrium hyperplasia (11.8%), disordered proliferative endometrium (9.2%), and endometrial polyp (5.3%). Women of EC and hyperplasia group were more likely to be multiparous, diabetic, hypertensive, obese or overweight, has a history of recurrent bleeding episodes or thick endometrium. Using multivariate logistic regression, we found ET (adjusted odds ratio [AOR] = 17.76, confidence interval [CI] 1.91–165.02, P < 0.011, criterion ≥11 mm), recurrent episode of bleeding (AOR = 13.21, CI 1.10–158.91, P < 0.042), diabetes (AOR = 8.03, CI 1.15–55.78, P < 0.035) the best predictors of EC. Conclusion: As clinical characteristics are possible predictors of EC, these should also be taken into account in risk estimations and in the formulation of management plans. This not only has benefit in the process of disease detection but also may result in improved the efficiency of care.

Keywords: Cancer, endometrial, hyperplasia, postmenopausal, risk factors

How to cite this article:
Begum J, Samal R. A clinicopathological evaluation of postmenopausal bleeding and its correlation with risk factors for developing endometrial hyperplasia and cancer: A hospital-based prospective study. J Mid-life Health 2019;10:179-83

How to cite this URL:
Begum J, Samal R. A clinicopathological evaluation of postmenopausal bleeding and its correlation with risk factors for developing endometrial hyperplasia and cancer: A hospital-based prospective study. J Mid-life Health [serial online] 2019 [cited 2023 Jan 29];10:179-83. Available from:

   Introduction Top

Postmenopausal bleeding (PMB) is defined as abnormal uterine bleeding occurring after 1 year of permanent cessation of menstruation resulting from loss of ovarian follicular activity.[1] About 90%–95% of postmenopausal women with endometrial cancer (EC) experience a vaginal bleeding, whereas about 10% of symptomatic postmenopausal women reveal an intrauterine malignancy.[2]

Endometrial atrophy is the most common cause of vaginal bleeding among postmenopausal women, whereas endometrial hyperplasia and polyps are other common causes.[3] Several risk factors such as obesity, tamoxifen use, increasing age, early menarche, late menopause, hypertension, diabetes, hereditary nonpolyposis colorectal cancer, and unopposed use of exogenous oestrogens are strongly associated with increased risk of type-I EC.[4] Type-I cancers have an endometrioid histology and account for 70%–80% of endometrial carcinomas. Type-II cancers have a nonendometrioid histology and arise in women who are less likely to have the clinical associations as seen in Type-I cancers.[5]

Therefore, PMB should always be investigated no matter how minimal or nonpersistent. Transvaginal sonography (TVS) is an efficient and acceptable noninvasive method for the early detection of endometrial pathology. A woman with PMB has a pretest probability of 10% for EC. A negative endometrial thickness (ET) test result can reduce the posttest probability of EC to 2.4% (95% confidence interval [CI] 1.3–3.9) at ≥4 mm and 5.0% (95% CI 2.9–9.1) at ≥5 mm. With a threshold of 5 mm for ET, the sensitivity for detecting any endometrial disease was 92%, and the sensitivity for detecting EC was 96%. Currently, controversy exists as to whether transvaginal ultrasonography or endometrial biopsy should be used as the initial diagnostic step for clinical evaluation of women presenting with PMB.[6] In addition, decisions made about the most appropriate investigations that needs to be performed, are not always guided by clinical history.

Therefore, PMB requires complete assessment to ensure the absence of malignancy and to identify and treat high risk patients, this will leads to reduction in the considerable societal burden imposed by EC. Hence, this study was undertaken to investigate the clinical data from history and endometrial pathology by endometrial sampling in patients with PMB with a secondary objective to identify risk factors associated with future development of EC.

   Methods Top

This study was a prospective study of the patients with PMB admitted for evaluation in Obstetrics and Gynaecology department of tertiary care hospital and medical college, Puducherry.

The present study was done after approval of Institutional Ethics Board and after taking informed consent from women. For this study, we included patients who were new referrals for the symptom of PMB. We excluded all symptomatic postmenopausal women with a vaginal bleeding arising from a cervical or vaginal or vulvar disease, women with bleeding disorders, on anticoagulants on menopausal hormone therapy (MHT). All patients satisfying the above inclusion criteria were enrolled in the study and detailed history regarding age of the patient at presentation, age at menopause, time since menopause, body mass index, any unscheduled vaginal bleeding with use of MHT, presence of hypertension and diabetes, single episode or recurrent episodes of vaginal bleeding. Recurrent episodes were defined as any bleeding episode lasting 7 or more days or two or more separate bleeding events within the past 12 months. Then, the patients were subjected to routine gynecological check-up where abdominal and pelvic examination was performed, followed by TVS for uterine volume, ovarian volume, and ET. The double-wall ET was measured in an anterioposterior dimension from one basalis layer to the other. In keeping with departmental guidelines, women with ET equal to or >5 mm were admitted for dilatation and curettage (D and C) under anesthesia to yield sufficient tissue for histological diagnosis. The histopathological examinations were performed by pathologists and the reports of the curettage were reviewed for all patients.

Sample size estimation

In a study done by Kadakola B et al., it was observed that the mean ET in postmenopausal group with PMB was 8.84 mm with a standard deviation (SD) of 8.04 mm.[7] We estimated sample size required to show the significant difference in means at 3 mm with a desired level of power of 90% and level of significance 0.05, by using the formula:


z= 1.96 (critical value that divides the central 95% of z distribution from 5% in the tails).

z β = 1.28 (critical value that separates the lower 10% of distribution from upper 90%), σ = SD, μ1−μ2 = difference of two means.

Accordingly, it was estimated that 76 patients are required to show the difference of 3 mm from established mean. We achieved this sample size by studying the patients from June 2015 to November 2016.

Statistical analysis

Data were summarized using standard descriptive methods, frequency and percentages for categorical variables, and mean and SD or median and range for continuous variables. Comparisons between categorical variables were tested by the use of contingency tables and by the calculation of the Chi-square test. Comparisons between normally distributed continuous variables and categorical variables were performed using Student's t-test and analysis of variance, whereas the nonparametric Mann–Whitney and Kruskal–Wallis tests were used for asymmetric continuous variables. For each factor of interest, a separate conditional logistic regression model was fit to evaluate the association between the factor and the case–control status. In addition, a multivariable, conditional logistic model was fit using stepwise and backward variable selection methods. Associations were summarized using the adjusted odds ratio (AOR) and the corresponding 95% CI. All calculated P values were 2 sided and P < 0.05 were considered statistically significant.

   Results Top

A total of 76 women with complaints of PMB and having ET ≥5 mm were referred to D and C. The basic characteristics (mean, SD, 95% CIs, range, and IQR) of the postmenopausal women are shown in [Table 1]. The mean age at the time of presentation was 57.17 ± 7.11 years. The mean menopausal age was 49.18 ± 3.69 years and the duration of menopause was 7.95 ± 6.52 years. Of these 76 women, all are multiparous. About 47.4% (36/76) of the study participants were diabetic, 38.2% (29/76) were hypertensive, 53.9% (41/76) were either obese or overweight, 61.8% (47/76) has recurrent episodes of vaginal bleeding, 1.3%(1/76) has unscheduled vaginal bleeding with the use of HRT. In this study, the mean thickness of endometrial was 11.13 ± 6.37 mm.
Table 1: Basic characteristics of women with postmenopausal bleeding

Click here to view

Histological examination revealed the presence of 23 (30.3%) women with endometrial atrophy, 21 (27.6%) with proliferative endometrium, 12 (15.8%) with EC, 9 (11.8%) with endometrial hyperplasia of which 4 (5.3%) cases of simple endometrial hyperplasia, 3 (3.9%) cases of complex hyperplasia with atypia, 2 (2.6%) cases of atypical hyperplasia, 7 (9.2%) with disordered proliferative endometrium, and 4 (5.3%) cases of endometrial polyps [Table 2].
Table 2: Histopathology of endometrium

Click here to view

The final sample consisted of 17 cases and 59 controls, a total of 76 participants. The 17 cases included 12 women with EC, 3 with complex hyperplasia with atypia, 2 with atypical hyperplasia. In 57 controls, 55 had benign pathologies and 4 with simple hyperplasia.

The results of the univariate analysis to assess for correlation between individual clinical characteristics and the development of EC are given in [Table 3]. Patient characteristics showed no significant differences with regard to age at presentation, age at menopause, year since menopause, past menstrual cycle, parity, and HRT use. Conversely, significant differences were present with regard to diabetes (P = 0.006), recurrent vaginal bleeding episodes (P = 0.002), presence of hypertension (P = 0.047), presence of obesity/overweight (P = 0.008), and ET (P < 0.001).
Table 3: Basic characteristics of the population

Click here to view

The five variables that showed significant difference in univariate analysis were included in multivariate analysis (diabetes, presence of hypertension, obesity/overweight, recurrent vaginal bleeding, and ET). Then, multivariate logistic regression analysis showed the significant predictive variables associated with EC: ET (AOR = 17.76, CI 1.91–165.02, P < 0.011, criterion ≥11 mm), recurrent episode of bleeding (AOR = 13.21, CI 1.10–158.91, P < 0.042), diabetes (AOR = 8.03, CI 1.15–55.78, P < 0.035) [Table 4].
Table 4: Multivariate logistic regression model showing the adjusted predictors of cancer (odds ratio)

Click here to view

   Discussion Top

Women with postmenopausal uterine bleeding may be assessed initially with either endometrial biopsy or transvaginal ultrasonography. Initial evaluation does not require the performance of both tests.[8] No further investigations need to be performed in women with ET <5 mm as suggested by recent evidence.[9],[10] This study was undertaken to investigate the clinical significance, to identify the risk factors and to study the endometrial pathology in PMB. We tried to gain information from the clinical history for performing risk assessment for postmenopausal women with vaginal bleeding so that individualized risk prediction will allow clinicians to make more efficient use of the available diagnostic resources and simultaneously minimize false-negative results from various investigations.

In the present study, the age at presentation was 45–75 years with a mean age was 57.17 ± 7.11, the age at menopause was 42–58 years with mean age was 49.18 ± 3.69 years and the mean year since menopause was 7.95 ± 6.52 years. The results are in accordance with the study done by Lidor et al. in 226 PMB cases and revealed that the ages of patients ranged from 40 to 81 years, with a mean of 56 years.[11] Whereas a similar study done by Ubeja and Singh in 100 PMB cases, it was observed that the age of presentation was 41–70 years with a mean age of 54.51 years and the mean year since menopause was 7.20 years which was similar to our study.[12]

In our study, PMB was most commonly found in multiparous associated with risk factors of obesity/overweight (53.9%), diabetes (47.4%), and hypertension (38.2%); these results were similar to studies done by Kothapally and Bhashyakarla and Nirupama et al.[13],[14] Kadakola et al. reported that most of the PMW with bleeding had ET 1–5 mm (<4 mm) with mean ± SD of 8.84 ± 8.04. The mean ET in PMW with bleeding in our study was 11.13 ± 6.37 mm, as we had excluded participants with ET of ≤5 mm for further evaluation.[7]

The most important finding of our study is that, despite identifying clinical factors significantly associated with the risk of endometrial neoplasia in univariate analysis, the results of multivariate logistic regression analysis showed the significant predictive variables associated with endometrial neoplasia were ET, recurrent episode of bleeding, diabetes with moderate ability to identify endometrial hyperplasia or cancer in women with PMB. The above-mentioned clinical and imaging criteria warrant further diagnostic testing as these women with PMB are at increased risk for endometrial hyperplasia or cancer. We also observed based on our results that diagnostic testing cannot be withheld safely from women without these characteristics.

We performed a prospective assessment of our patient which allowed us to standardize any type of examination, so as to have more reliable data and all our women had a definitive histological diagnosis with an optimal reference standard which is the strength of the study.

Some patient-related data were collected retrospectively, with clinical questions to our women about past events (e.g., recurrent vaginal bleeding). We choose symptomatic postmenopausal women with ET >5 mm because women with a lower ET have a very low incidence of cancer and usually, we do not perform further examinations in our centers as per institutional protocol so, we selected only women those can be subjected to endometrial biopsy which can be a limitation of our study.

With our given sample size, it is not possible to differentiate the whole spectrum of endometrial neoplasia as they are associated with varied biological behavior, different demographic parameters, and clinical risk factors.

Clinical characteristics play a major role in predicting in the diagnosis of EC and these should be considered in risk estimations and in the formulation of management plans. Postmenopausal women with new or recurrent bleeding symptoms should be advised to re-attend for evaluation.

   Conclusion Top

We have seen that incorporation of clinical information aided with initial investigations like TVS allows us in guiding the subsequent investigations and treatment strategies. The beneficial effects are evident for disease detection and improved patient care.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

   References Top

Research on the menopause in the 1990s. Report of a who scientific group. World Health Organ Tech Rep Ser 1996;866:1-107.  Back to cited text no. 1
Giannella L, Mfuta K, Setti T, Cerami LB, Bergamini E, Boselli F. A risk-scoring model for the prediction of endometrial cancer among symptomatic postmenopausal women with endometrial thickness > 4 mm. Biomed Res Int 2014;2014: 130569. doi:10.1155/2014/130569.  Back to cited text no. 2
Iatrakis G, Diakakis I, Kourounis G, Sakellaropoulos G, Rammos G, Ladopoulos J, et al. Postmenopausal uterine bleeding. Clin Exp Obstet Gynecol 1997;24:157.  Back to cited text no. 3
Burbos N, Musonda P, Giarenis I, Shiner AM, Giamougiannis P, Morris EP, et al. Predicting the risk of endometrial cancer in postmenopausal women presenting with vaginal bleeding: The norwich DEFAB risk assessment tool. Br J Cancer 2010;102:1201-6.  Back to cited text no. 4
Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol 1983;15:10-7.  Back to cited text no. 5
Goldstein RB, Bree RL, Benson CB, Benacerraf BR, Bloss JD, Carlos R, et al. Evaluation of the woman with postmenopausal bleeding: Society of radiologists in ultrasound-sponsored consensus conference statement. J Ultrasound Med 2001;20:1025-36.  Back to cited text no. 6
Kadakola B, Gurushankar G, Shivamurthy G, Rashmi MN. Ultrasonographic evaluation of abnormal uterine bleeding in postmenopausal women. Int J Reprod Contracept Obstet Gynecol 2015;4:229-34.  Back to cited text no. 7
American College of Obstetricians and Gynecologists. ACOG committee opinion no 440: The role of transvaginal ultrasonography in the evaluation of postmenopausal bleeding. Obstet Gynecol 2009;114:409-11.  Back to cited text no. 8
Karlsson B, Gransberg S, Wikland M, Ylo¨stalo P, Torvid K, Marsal K, et al. Transvaginal ultrasonography of the endometrium in women with postmenopausal bleeding – A Nordic multicenter study. Am J Obstet Gynecol 1995;172:1488-94.  Back to cited text no. 9
Smith-Bindman R, Kerlikowske K, Feldstein VA, Subak L, Scheidler J, Segal M, et al. Endovaginal ultrasound to exclude endometrial cancer and other endometrial abnormalities. JAMA 1998;280:1510-7.  Back to cited text no. 10
Lidor A, Ismajovich B, Confino E, David MP. Histopathological findings in 226 women with postmenopausal uterine bleeding. Acta Obstet Gynecol Scand 1986;65:41-39.  Back to cited text no. 11
Ubeja A, Singh A. Clinicopathological evaluation of postmenopausal bleeding in rural hospital set up. Int J Reprod Contracept Obstet Gynecol 2017;6:3556-9.  Back to cited text no. 12
Kothapally K, Bhashyakarla U. Postmenopausal bleeding: Clinicopathologic study in a teaching hospital of Andhra Pradesh. Int J Reprod Contracept Obstet Gynecol 2013;2:344-8.  Back to cited text no. 13
Nirupama V, Suneetha Y, Prabha Devi K. Post menopausal bleeding: An analytic study of 100 cases. Int J Sci Res 2015;4:2319.  Back to cited text no. 14


  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Evaluation of endometrial thickness by transvaginal ultrasound and baseline risk factors as a predictor for endometrial abnormalities in postmenopausal women
Jyothirmayi Yerrisani, Anoushka Kothari, Kelly Collins, Emma Ballard, Alka Kothari
Australasian Journal of Ultrasound in Medicine. 2022;
[Pubmed] | [DOI]
2 Rare case of coexisting ovarian Brenner tumour and ovarian stromal hyperplasia presenting with persistent endometrial hyperplasia following treatment with levonorgestrel-intrauterine system
Zhun Wei Mok, Janice Pui See Chin
BMJ Case Reports. 2022; 15(12): e252391
[Pubmed] | [DOI]
3 Decision Support System for Classification Medullary Thyroid Cancer
Jamil Ahmed Chandio, Ghulam Ali Mallah, Noor Ahmed Shaikh
IEEE Access. 2020; 8: 145216
[Pubmed] | [DOI]


    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this article
    Article Tables

 Article Access Statistics
    PDF Downloaded552    
    Comments [Add]    
    Cited by others 3    

Recommend this journal